> ELECTRO-MECHANICAL OPERATOR FOR HEAVY SLIDING GATES AND DOORS 1.1 KW (1.5 HP)

INSTALLATION MANUAL

FIBD 300
 GATE OPERATOR

FOR CORRECT FIBO 300 INSTALLATION AND GOOD PERFORM ANCE, PLEASE READ THE INSTRUCTIONS OUTLINED IN THIS M ANUAL CAREFULLY AND KEEP TO THE DIAGRAM S.
IM PORTANT: THE ENTIRE INSTALLATION M UST BE CARRIED OUT BY QUALIFIED TECHNICAL PERSON NEL IN COM PLIANCE WITH EN 12453 - EN 12445 SAFETY STAN DARDS AND IN ACCORDANCE WITH M ACHINERY DIRECTIVE 98/37/EC.

GENERAL INFORM ATION

The three-phase 1.1 kW (1.5 HP) FIBO 300 is an automation for heavy sliding gates and industrial doors (the field of use varies from a gate weight of 1,000 to approx. $2,500 \mathrm{Kg}$); the gear motor unit is installed inside a sheet steel protection cover, which is fixed to a thick metal base plate. The protection cover houses the power panel and the electronic command programmer, while the limit switches are already attached to the body of the gear motor. The protection cover can only be accessed by using the customized key. This is a strong and reliable automation for intense opening/closing cycles. The drive shaft is in direct contact with a mechanic al torque control device; worm and gear are made of bronze and steel and are supported by bearings, in an oil bath. The irreversible worm-gear coupling makes it possible to block the gate in any stop position. A manual overriding system allows manual gate operation in emergency events such as power failure.

POINTS TO CHECK W ITH THE GATE

- IM PORTANT: M ake sure that the gate track is well fixed to a solid foundation in order to prevent deformation which would result in unbalanced gate motion (Pic. 1).
- IM PORTANT: Make sure that gate stops are fixed in the open and closed gate positions so that the gate does not over travel the permitted limit and exit the upper guide (Pic. 1).
- IM PORTANT: M ake sure that, once the gate has reached the end of the permitted travel area, it does not hit the gate posts or special gate stops so as to avoid damaging the gate structure (Pic. 1).

PIC. 1

PIC. 2

FITTING THE BASE PLATE

- The first operation involves preparing a cable containment well near the installation, connected to the FIBO 300 base plate by an appropriate conduit for electrical connections (Pic. 3).
- In order to fit the base plate " G " it is necessary to firstly remove the protection cover " H " by unscrewing the four fixing screws "A" from the bottom of the automation sides (Pic. 2).
- The base plate " G " should be fixed into place with $\mathbf{M} 16$ plugs " T ", w wich must be firmly anchored in the flooring, respecting the base plate hole centre distances and making sure that the automation base plate " G " is perfectly levelled by using spirit levels (Pic. 3).

PROCEDURE FOR INSERTING AND FIXING THE FOUNDATION PLUGS "T"

1

BORE 4 HOLES IN KEEPING WITH THE DIAM ETER OF THE PLUGS AND THE PASSAGE
(2)

INSERT THE PLUGS IN THE HOLES LEAVING A PART PROTRUDING FROM THE FLOOR EQUIVALENT TO THE THICKNESS OF THE BASE PLATE AND FIXTURE NUT, CONSIDERING THE PROTRUSION OF THE PLUG DURING TIGHTENING

TIGHTENING THE PLUGS: ONCE THE PLUG PROTRUSION HAS BEEN ESTABLISHED, tighten the nut to the FLOOR IN ORDER TO FIRMLY FIX THE PLUG IN THE HOLE, THEN UNSCREW AND REM OVE THE NUT

PIC. 3

M ANUAL GATE AUTOM ATION RELEASE
The release operation frees the gate's movement from the installed operator in events such as power cuts and during Fibo 300 installation operations.

- Open the cover door using the customized key "C" (Pic. 2)
- Use a 27 mm box spanner "M" on the M 18 self-locking nut on the drive shaft located immediately beneath the electric panel support: turn the nut a few times in an anti-clockwise direction so that the drive gear " I " located behind the automation becomes idle (Pic. 4).

$$
\text { PIC. } 4
$$

RACK FITTING OPERATIONS

IM PORTANT: in order to achieve effective installation, there should be a gap of approximately 2 mm betw een the teeth of the rack and drive gear coupling (Pic. 7).

- Use a double rack of $22 \times 22 \mathrm{~mm}$ thickness (we recommend using an angular support in order to connect the racks to the gate) (Pic. 6).
- Temporarily clamp the rack to the gate, levelling it using a spirit level for the entire length of the gate: the rack must mesh the idle Fibo 300 driving gear "I" smoothly and without friction. This should be manually tested by running the system backwards and forwards along the whole length of the gate for its effective course.
- Firmly w eld the tw o racks together and then to the gate with an angular support $50 \times 50 \times 6$, respecting the pitch betw een the teeth in the rack junctions, using a spare rack as a gage for that purpose (Pic. 8).

VIEW BEHIND GEAR SIDE RACK

PIC. 6
PIC. 7

PIC. 8

INSTALLATION OF LIMIT SWITCH STRIKE PLATES "F’
In order to stop the gate's movement, the Fibo 300 has tw o hermetic roller tip limit switches positioned behind the automation, one of which operates during closing and one during opening (Pic. 5).
The two strike plates " F " for stopping gate movement during opening and closing must be fixed to the gate by screws (Pic. 9), in such a position that the limit switch roller tips come into action as soon as they meet the strike plates "F".

PIC. 9

TORQUE CONTROL AND ADJ USTM ENT

In order to adjust the operator torque, open the door with the customized key, then use a 27 mm box spanner "M" on the M 18 selflocking nut located on the front beneath the electric power panel "E.P.P." : tighten in order to increase the torque and loosen in order to reduce the torque (Pic. 10)

PIC. 10

FIB 0300 ELECTRIC POW ER PANEL
DRW G. No. 3911

FIBO 300 ELECTRIC POW ER PANEL. ELPRO 10 exp LOGIC DESCRIPTION

All the electrical connections are to be made as per the following instructions and diagrams. Supply the terminals 21-22-23 with 230$400 \mathrm{~V}, 50 \mathrm{~Hz}$, three-phase voltage. The "red led" No. 1 switches on and stays on as long as the board is properly supplied. Set the timer "M OTOR RUN. OPEN \& CLOSE" so that the running time of the motor is longer than the actual travel of the gate. Set the timer "DW ELL" - i.e. the interval betw een open and re-close - so that you can meet the required interval of time.

LOGIC OF THE ELECTRONIC PROGRAM M ER: When a pulse is given, the flashing light switches on. After three seconds
the motor starts. During the interval before re-closing, the light stays on. W hen the gate has fully re-closed, the light keeps on flashing for three more seconds and then switches off automatic ally.
The 3 second interval (pre-flashing) which precedes the actual start of the motor can be eliminated by means of the DIP-SWITCH "B" No. 4.

LED No. 1: It switches on when voltage is supplied.
LED No. 2: "PHOTOCELLS". N ormally on. It switches off when the photocells are obstructed.
LED No. 3: "OPEN". It switches on when the respective switch is activated.
LED No. 4: "CLOSE". It switches on when the respective switch is activated.
LED No. 5: "STOP" Normally on. It switches off when the respective switch is activated.
LED No. 6: "LIMIT SWITCH. CLOSE". It switches off when the gate is fully closed.
LED No. 7: "LIMIT SWITCH. OPEN". It switches off when the gate is fully open.
LED No. 8: "RADIO". It switches on whenever a pulse is given, either through remote control, keyswitch or push buttons.

1) It is advisable not to expose the control box directly to weather conditions. If mounted outside, a suitable enclosure is recommended to protect it from sunshine and rain.
2) Earth the equipment by using the terminal fitted to the box, bottom right-hand side.
3) Bridge terminals 1-2 if you do not require any photocells.
4) Should two sets of photocells be required, these are to be series connected to terminals 1 2, contact normally closed.
5) Bridge terminals 3-6 if you do not require any keyswitch or push buttons.
6) Fit the mains to the control box with a high sensitivity, differential, magnetic-thermal sw itch, 0.03 Amps.
7) NOTE W ELL

FAULT FINDING:

- Check supply voltage with a tester: it must be $230-400 \mathrm{~V}$, three-phase.
- Check the high voltage fuses.
- Check if the photocell contacts are normally closed.
- Check voltage from the control box to the electric motor: power might have dropped.
- Check the fuse LOGIC.
- The section of the electric cables to the motor must not be less than $1.5 \mathrm{~mm}^{2}$.
* 24 V ~output. Terminals 12 -13. It can supply power for 2 pairs of photocells plus 1 radio receiver. Terminal 11 provides a pow er output for a lamp. $24 \mathrm{~V}-3 \mathrm{~W}$ max.
Flashing lamp output. Terminals 22-23. M aximum available power 25 W max.
Elpro-10 exp suomg artes - thete.phase

PIC. 12

ELECTRICAL CONNECTIONS TO ELPRO 10 exp PROGRAMMER

Before making any connections, study the enclosed electrical diagrams carefully (Pic. 11, Pic. 12, Pic. 13).
IM PORTANT: The whole electrical system must be earthed (Pic. 13).

- Pow er supply, electric motor and flashing light connections are made with electric cables with a section of $1.5 \mathrm{~mm}^{2}$ for a maximum distance of 50 m . For distances of over 50 metres, we recommend using electric cables with a section of $2 \mathrm{~mm}^{2}$.
- For limit sw itc hes, photocells, pushbuttons and accessories use cables with a 1 mm² section (Pic. 11 - Drw g. 3911).
- The pneumatic safety rib attached to the gate is connected via cable, a cable winder is to be provided to take up the slack, or by radio link, in series with the limit sw itches or with the receiving photocell, connection diagram Drw g. 3911.
- The ELPRO 10 exp three-phase electronic programmer is installed in its own panel, inside the Fibo 300 protection cover; it is prepared for all programmed automatic and semiautomatic logic services, line relays and incorporated indication lights (Pic. 11 - Drw g. 3911).

COM PONENTS AND ACCESSORIES

1) MIRI 4 FLASHING LIGHT
2) DIFO 33 RECEIVING PHOTOCELL
3) CRUASTRO RADIO LINK RECEIVER
4) M AGNETOTHERM AL DIFFERENTIAL M AINS SWITCH, 0.03 A TYPE
5) FIBO 300
6) 2 RACKS ONE NEXT TO THE OTHER
7) DIFO 33 PROJ ECTING PHOTOCELL
8) CRUASTRO RADIO LINK TRANSM ITTER
9) RUBBER PNEUM ATIC RIB
10) SECH 15 KEYSWITCH
11) ASTRO 43 EXTERNAL RADIO RECEIVER
12) BIRIO A8 ANTENNA
13) PULIN 3 WALL-M OUNTED PUSH BUTTON PANEL

PIC. 13

Fibo 300 is fitted with a safety system that is activated upon opening the front cover door, through an "NC" power cut-off switch which, for automations without an installed electric panel, must be connected to the Elpro 10 programmer, terminals 14-15 (Pic. 10 and Pic. 11); it is also necessary to earth the entire system (Pic. 14).

PIC. 14

SEPARATE LIMIT SWITCH ELECTRICAL CONNECTIONS

Fibo 300 has two independent limit switches, protected and isolated from outside (Pic. 15) and not connected to the electric panel "E.P.P.", therefore once the protection cover has been removed (Pic. 2, p. 2), it is necessary to implement the wiring in keeping with the diagrams provided (Pic. 11 and Pic. 15) following the Elpro 10 function logic description, Drw g. 3911 p. 6.
 LIM IT SWITCH

"CLOSING" LIM IT SWITCH

ELPRO 10 TERM INAL BOX (Pic. 11)

PIC. 15

ELECTRIC M OTOR

Power output.1.1 KW (1.5 HP)
Three-phase supply voltage 230/400 V
Frequency 50 Hz
Absorbed current 5.1/3 A
Absorbed power 1500 W
M otor rotation speed 1400 rpm
Intermittent service S1
Cooling by fan

PERFORM ANCE

Duty cycle
25 s. Open - 30 s. Dwell - 25 s. Close
Time for one complete cycle.
80 s.
No. of complete cycles Open - Dwell - Close 45/hour
No. of cycles a year, 8 hours a day $.131^{\prime} 000$

FIB 0300 GEAR M OTOR

Output revolutions 40.7 rpm
Drive gear Z 24
Module 4.0
Ratio 1 / 32
M aximum nominal torque 128 Nm
Transfer speed $12 \mathrm{~m} / \mathrm{min}$.
Hydraulic oil type AGIP ROTRA THT
W orking temperature $20^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$
Weight 65 Kg
Protection standard IP 557

OVERALL DIM ENSIONS

REAR VIEW

SIDE VIEW

"E.P.P." ELECTRIC PANEL IN WATERTIGHT CABINET WITH ELPRO $10 \exp$ PROGRAM M ER AND POW ER CONTACTORS

FIBO 300:
1 - ELECTRIC M OTOR
2-PROTECTION COVER
3 - PANEL WITH INCORPORATED
ELECTRONIC PROGRAM M ER

- LIM IT SWITCH

5-BASE PLATE
6 - Z 24 DRIVE GEAR

FIBO 300 INSIDE PROTECTION CABINET WITH CUSTOMIZED KEY

LIMIT SWITCH STRIKE PLATES

"E.P.P."
UPON REQUEST: ELECTRIC POW ER PANEL WITH ELPRO 10 exp PROGRAM MER AND ACCESS KEYS

"M"
27 mm RELEASE BOX SPANNER

INSPECTIONS AND MAINTENANCE

In order to ensure optimal system performance over time and so as to comply with current safety standards, it is necessary to follow the correct maintenance and monitoring procedures for the entire automation, electronic devices and wiring:

- Oil-hydraulic automation: maintenance inspection around every 6 months
- Electronic devices and safety systems: maintenance inspection monthly.

WARNINGS

- Perform a Risk Analysis before every installation and resolve risks through the use of safety devices in compliance with EN 12445 and EN 12453 safety standards
- Follow the instructions provided
- Dispose of all cardboard, nylon, polystyrene and other packaging with specialized waste disposal firms
- If removing the actuator, do not cut the electric wires, but disconnect them from the terminal box by loosening the screws inside the junction box
Disconnect the mains switch before opening the electrical wire junction box cover
- The whole automation should be earthed with the yellow/green wire

We recommend reading the "warning" regulations, suggestions and observations in this booklet very carefully.

C
EUROPEAN MARK CERTIFYING CONFORMITY TO THE ESSENTIAL REQUIREMENTS OF THE STANDARDS 98/37/EC

- DECLARATION OF CONFORM ITY
- GENERAL WARNINGS
- EN 12453, EN 12445 STANDARDS
- CEI EN 60204-1 STANDARDS
- WARRANTY CERTIFICATE ON THE CUSTOM ER'S REQUEST

AUTOMATIC GATE MANUFACTURERS

FADINI
the gate opener
Made in Italy

The manufacturers reserve the right to change the products without any previous notice

